36 research outputs found

    An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

    Get PDF
    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots’ workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning

    Low-cost embedded system for relative localization in robotic swarms

    Get PDF
    In this paper, we present a small, light-weight, low-cost, fast and reliable system designed to satisfy requirements of relative localization within a swarm of micro aerial vehicles. The core of the proposed solution is based on off-the-shelf components consisting of the Caspa camera module and Gumstix Overo board accompanied by a developed efficient image processing method for detecting black and white circular patterns. Although the idea of the roundel recognition is simple, the developed system exhibits reliable and fast estimation of the relative position of the pattern up to 30 fps using the full resolution of the Caspa camera. Thus, the system is suited to meet requirements for a vision based stabilization of the robotic swarm. The intent of this paper is to present the developed system as an enabling technology for various robotic tasks

    THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Get PDF
    In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP) that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM). In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments

    ON SAMPLING BASED METHODS FOR THE DUBINS TRAVELING SALESMAN PROBLEM WITH NEIGHBORHOODS

    Get PDF
    In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper

    ON CONSTRUCTION OF A RELIABLE GROUND TRUTH FOR EVALUATION OF VISUAL SLAM ALGORITHMS

    Get PDF
    In this work we are concerning the problem of localization accuracy evaluation of visual-based Simultaneous Localization and Mapping (SLAM) techniques. Quantitative evaluation of the SLAM algorithm performance is usually done using the established metrics of Relative pose error and Absolute trajectory error which require a precise and reliable ground truth. Such a ground truth is usually hard to obtain, while it requires an expensive external localization system. In this work we are proposing to use the SLAM algorithm itself to construct a reliable ground-truth by offline frame-by-frame processing. The generated ground-truth is suitable for evaluation of different SLAM systems, as well as for tuning the parametrization of the on-line SLAM. The presented practical experimental results indicate the feasibility of the proposed approach

    ON FPGA BASED ACCELERATION OF IMAGE PROCESSING IN MOBILE ROBOTICS

    Get PDF
    In visual navigation tasks, a lack of the computational resources is one of the main limitations of micro robotic platforms to be deployed in autonomous missions. It is because the most of nowadays techniques of visual navigation relies on a detection of salient points that is computationally very demanding. In this paper, an FPGA assisted acceleration of image processing is considered to overcome limitations of computational resources available on-board and to enable high processing speeds while it may lower the power consumption of the system. The paper reports on performance evaluation of the CPU–based and FPGA–based implementations of a visual teach-and-repeat navigation system based on detection and tracking of the FAST image salient points. The results indicate that even a computationally efficient FAST algorithm can benefit from a parallel (low–cost) FPGA–based implementation that has a competitive processing time but more importantly it is a more power efficient

    FPGA based speeded up robust features

    Get PDF
    We present an implementation of the Speeded Up Robust Features (SURF) on a Field Programmable Gate Array (FPGA). The SURF algorithm extracts salient points from image and computes descriptors of their surroundings that are invariant to scale, rotation and illumination changes. The interest point detection and feature descriptor extraction algorithm is often used as the first stage in autonomous robot navigation, object recognition and tracking etc. However, detection and extraction are computationally demanding and therefore can't be used in systems with limited computational power. We took advantage of algorithm's natural parallelism and implemented it's most demanding parts in FPGA logic. Several modifications of the original algorithm have been made to increase it's suitability for FPGA implementation. Experiments show, that the FPGA implementation is comparable in terms of precision, speed and repeatability, but outperforms the CPU and GPU implementation in terms of power consumption. Our implementation is intended to be used in embedded systems which are limited in computational power or as the first stage preprocessing block, which allows the computational resources to focus on higher level algorithms

    Hexapod Gait Control Through Internal Model Belief Update

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P3

    ON EVALUATION OF MOTION GAITS ENERGY EFFICIENCY WITH A HEXAPOD CRAWLING ROBOT

    Get PDF
    In this work, we are concerning the problem of energy efficient locomotion of a hexapod crawling robot. We are emphasizing a practical verification and deployment on a real walking robot to evaluate relations between the energy consumption, motion speed, and terrain type with a particular motion gait. The tripod, tetrapod, and pentapod motion gaits are considered in the presented evaluation report
    corecore